Foliated Lie and Courant Algebroids

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Regular Courant Algebroids

For any regular Courant algebroid, we construct a characteristic class à la Chern-Weil. This intrinsic invariant of the Courant algebroid is a degree-3 class in its naive cohomology. When the Courant algebroid is exact, it reduces to the Ševera class (in H DR(M)). On the other hand, when the Courant algebroid is a quadratic Lie algebra g, it coincides with the class of the Cartan 3-form (in H(g...

متن کامل

Transitive Courant algebroids

We express any Courant algebroid bracket by means of a metric connection, and construct a Courant algebroid structure on any orthogonal, Whitney sum E⊕C where E is a given Courant algebroid and C is a flat, pseudo-Euclidean vector bundle. Then, we establish the general expression of the bracket of a transitive Courant algebroid, that is, a Courant algebroid with a surjective anchor, and describ...

متن کامل

Hypercomplex Structures on Courant Algebroids

In this note, we prove the equivalence of two characterizations of hypercomplex structures on Courant algebroids, one in terms of Nijenhuis concomitants and the other in terms of (almost) torsionfree connections for which each of the three complex structures is parallel. A Courant algebroid [4] consists of a vector bundle π : E → M , a nondegenerate symmetric pairing 〈, 〉 on the fibers of π, a ...

متن کامل

Lie Algebroids and Lie Pseudoalgebras

Lie algebroids and Lie pseudoalgebras arise from a wide variety of constructions in differential geometry; they have been introduced repeatedly into the geometry, physics and algebra literatures since the 1950s, under some 14 different terminologies. The first main part (Sections 2-5) of this survey describes the four principal classes of examples, emphazising that each arises by means of a gen...

متن کامل

Courant Algebroids from Categorified Symplectic Geometry

In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed nondegenerate (n + 1)-form. The case relevant to classical string theory is when n = 2 and is called ‘2-plectic geometry’. Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2010

ISSN: 1660-5446,1660-5454

DOI: 10.1007/s00009-010-0045-0